Mark Scheme - PI2.2 Chemistry of the d-block Transition Metals

1 (a) (i) Number of moles of EDTA =
$$\underline{19.20 \times 0.010}$$
 = $1.92 \times 10^{-4} / 0.000192$ [1]
- error carried forward throughout (a)
(ii) $1.92 \times 10^{-4} / 0.000192$ [1]
(iii) Concentration = $\underline{1.92 \times 10^{-4} \times 1000}$ = $3.84 \times 10^{-3} / 0.00384 \text{ mol dm}^{-3}$ (1)
50

Concentration =
$$3.84 \times 10^{-3} \times 63.5 = 0.244 \text{ g dm}^{-3}$$
 (1) [2]

(iv) % Cu =
$$\frac{0.244 \times 100}{11.56}$$
 = 2.11 [1]

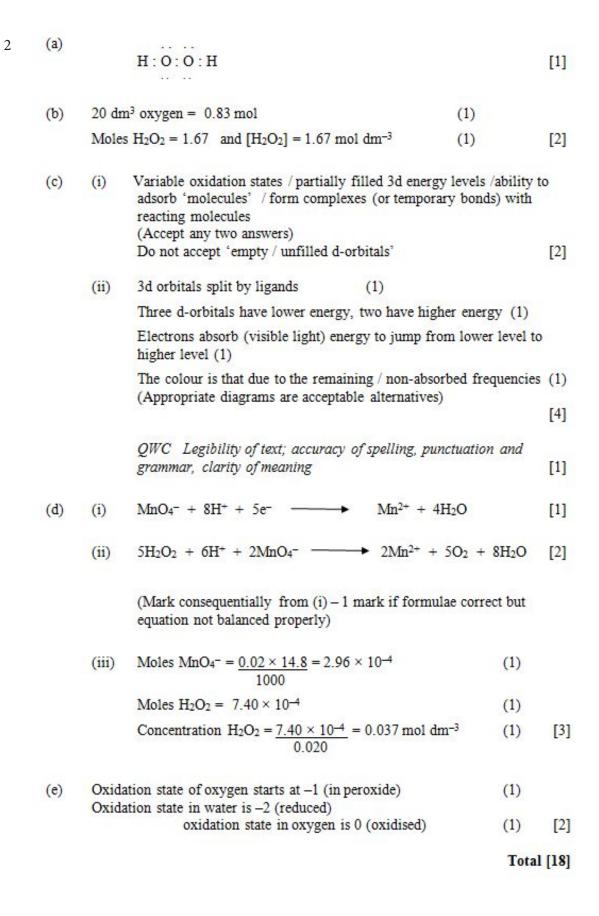
(b) Transition elements have either a partly filled 3d sub-shell or form ions that have a partly filled 3d sub-shell (1) However copper forms Cu²⁺ ions that are '3d⁹' / partly filled 3d sub-shell (1) whereas Zn²⁺ ions are '3d¹⁰' / full 3d sub-shell (1) - any 2 from 3 [2]

QWC Organisation of information clearly and coherently; use of specialist vocabulary where appropriate. [1]

(c)

Complex ion	Shape	Colour yellow / lime green	
[CuCl ₄] ²⁻	tetrahedral		
[Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺	octahedral	deep blue	

- (d) The more negative the ΔH_f value the more stable the oxide (1) PbO is relatively the more stable / CuO is relatively the less stable (1) - must have the first mark to get second
- (e) (i) Any TWO from
 variable oxidation states
 partially filled 3d energy levels
 ability to adsorb 'molecules'
 ability to form complexes with reacting molecules / temporary / co-ordinate bonds

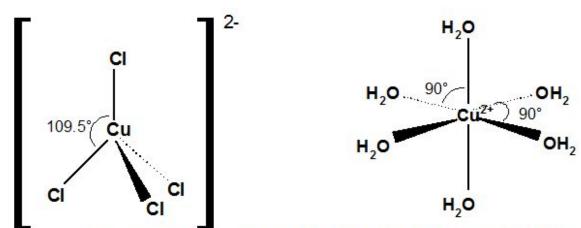

One mark for each correct response [2]

(ii) e.g. to allow lower pressures / temperatures
use recyclable catalysts - needs qualifying
longer lasting / less toxic catalysts

[1]

Total [15]

[2]



Provides an alternative pathway (1) with lower activation energy / more particles have energy above E_A (1)

[2]

any example e.g. [1] iron for Haber process / manufacture of ammonia vanadium(V) oxide in Contact process / manufacture of sulfuric acid platinum / palladium / rhodium in catalytic converters / to remove toxic gases from exhaust fumes nickel in hydrogenation of alkenes / unsaturated oils

- 4 (a) (i) Species with lone pair that can bond to a metal atom/ion (1) [1]
 - (ii) Must clearly show which atoms are bonded and the 3D structure 1 mark each (2)

- (iii) Ligands cause d-orbitals to split into three lower and two higher (1)
 Electrons move from lower level to higher level by absorbing some frequencies (1)
 Light not absorbed gives colour seen (1) [3]
- (iv) $[Cu(NH_3)_4(H_2O)_2]^{2+}(1)$ Royal blue (1) [2]
- (b) (i) $K_p = \frac{P_{PCls}P_{Cls}}{P_{PCls}}$ do not accept if [] included [1]
 - (ii) I. 1.3×10^5 (Pa) [1]
 - II. $P_{PCI5} = 3.0 \times 10^5 1.3 \times 10^5 = 1.7 \times 10^5$ (1) (ecf from part I) $K_p = (1.3 \times 10^5 \times 1.3 \times 10^5) / 1.7 \times 10^5 = 9.9 \times 10^4$ (1) Pa (1) [3]
 - III. Endothermic as equilibrium shifts to products when temperature increases [1]
- (c) SiCl₄ + 2H₂O \rightarrow SiO₂ + 4HCl OR SiCl₄ + 4H₂O \rightarrow Si(OH)₄ + 4HCl (1)

Silicon has available empty d-orbitals whilst carbon does not / Silicon can expand its octet whilst carbon cannot (1)

Total [16]

[2]

[2]

5	(a)	Name of any commercially/ industrially important chlorine containing compound e.g. (sodium) chlorate(I) as bleach/ (sodium) chlorate(V) as weedkiller/ aluminium chloride as catalyst in halogenation					
			- do not accept CFCs			[1]	
	(b)	(i)	$K_c = \frac{[HI]^2}{[H_2][I_2]}$ must be square brackets		[1]		
		(ii)	$K_{\rm c} = \frac{0.11^2}{3.11^2} = 1.25 \times 10$	-3	follow through error (ft)	[1]	
		(iii)	K₀ has no units		ft	[1]	
		(iv)	when temperature incre	reases (1)			
			therefore ΔH for forward reaction is +ve (1) (mark only awarded if marking point 2 given)			[3]	
	(c)	(i)	+2			[1]	
		(ii)	co-ordinate/ dative (covalent)			[1]	
		(iii)	pink is $[Co(H_2O)_6]^{2+}$ and blue is $[CoCl_4]^{2-}$ (1)				
			(ligand is) Cl ⁻ (1)				
		(addition of HCl sends) equilibrium to RHS (1)				[3]	
		(iv)	$[Co(H_2O)_6]^{2+}$ shown as octahedral [with attempt at 3D] (1)				
			[CoCl ₄] ²⁻ shown as tetr	ahedral/ squ	are planar (1)	[2]	

Total [14]